8 research outputs found

    Evaluation of the leachate chemistry and contaminants attenuation in acid mine drainage by fly ash and its derivatives

    Get PDF
    Philosophiae Doctor - PhDThe mining industry in South Africa has a huge potential to impact negatively on the environment. Negative impacts include generation of reactive tailings and acid mine drainage (AMD). AMD is highly acidic (pH 2-4), sulphate-rich and frequently carries a heavy metal burden. South Africa uses more than 100 million tonnes of low grade bituminous coal annually to produce cheap electricity. The associated mining operations result in millions of tonnes of polluted water and in turn coal burning power stations produce vast amounts of waste ash such as fly ash. The highly soluble CaO occurring as sub-micron fragments on the fly ash particles is highly reactive and can be utilized in the neutralization of acid mine drainage. Acid mine drainage (AMD) was reacted with two different South African fly ashes in a batch setup in an attempt to evaluate their neutralization and inorganic contaminants removal capacity. The concentrations of major constituents in the AMD were found to determine the final pH attained in the reaction mixture and the reaction time of breakthrough to circum-neutral and alkaline pH. Efficiency of elemental removal in the AMD by the FA was directly linked to the amount of FA in the reaction mixture and to the final pH attained. Most elements attained ≈ 100 % removal only when the pH of minimum solubility of their hydroxides was achieved. In the second part of the study, Acid mine drainage (AMD) was reacted with coal fly ash in a 24 hour equilibration time using 1:3 and 1:1.5 FA: AMD ratios by weight to produce neutral and alkaline process waters. The capacity of the fly ash to remove the major inorganic contaminants from AMD was examined with time. The geochemical computer software PHREEQC and WATEQ4 database were used for geochemical modeling of the process water chemistry at selected reaction times. The collected solid residues were analyzed by X-ray diffraction, scanning electron microscopy (SEM) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). At both ratios the reaction mixture was at saturation or oversaturated with alunite, basaluminite, jurbanite, boehmite, gibbsite, diaspore, gypsum, barite, K, Na-jarosites, ettringite, amorphous Fe (OH)3 and goethite at specific contact times. The precipitation of the many inorganic contaminants was established in terms of the mineral phases at saturation or over-saturation. Sequential extraction revealed the amorphous fraction to be the most important in retention of the major and minor inorganic contaminants at pH > 6.32 which implies that the concentration of total Fe and Al in the AMD being treated has a direct effect on the clean-up efficiency of the process. In the third part of the study, a column leaching of the solid residues (SR) blended with varying amounts of fly ash (5 %, 25 %, 40 %) and 6 % Ordinary Portland Cement (OPC) was carried out to assess the contaminant attenuation with time. The columns were drained with synthetic acid mine drainage (SAMD) over a period of 165 days. In addition the solid residues were modified with 1-6% OPC and their strength development monitored over a period of 365 days. The column solid cores were observed to acidify in a stepwise fashion, exhibiting three buffer zones. The SR alone and SR blended with fly ash exhibited strong buffering capacity at pH (7.5-9) for an extended period of time (97-110 days). Encapsulation of solid residue particles by the calcium silicate hydrate gels (CSH) in OPC blended solid residues obscured the appearance of the sustained buffering at pH 7-9.5. The fly ash and OPC blend solid residues exhibited decontamination efficiencies of (82-99 %) for Al, Fe, Mn and SO4 2- over the study period. However the OPC blend SR exhibited high attenuation efficiency even as the pH dropped to below 4. SR + 6 % OPC core was observed to be the most efficient interms of retention of highly mobile elements such as B and Mo. pH was observed to be the main determining factor in contaminants attenuation. Geochemical modeling results revealed that pH and SO42- concentrations in the leachate had a significant impact on the mineral phases controlling Fe and Al concentration in the leachates. In the SR + 6 % OPC solid cores, EDX analysis revealed that CSH gels and calcium aluminate hydrate gels were being precipitated. These gels were either incorporating Fe, Mg, Mn in their matrix or encapsulating the solid residue particles that were rich in these elements. Sequential extractions of the leached solid cores revealed the amorphous fraction to be the most important in retention of the major contaminants and were most enhanced in the OPC blend solid residues. The OPC blend solid residue slurries developed unconfined compressive strength (UCS) (2-3 Mpa) comparable to paste formulated from sulphidic rich mine tailings confirming that the solid residues can be used for backfilling. Therefore the solid residues (SR) can successively be applied for a dual purpose in mined out areas namely, to remediate acid mine drainage waters and also provide support for the overburden. Keywords: Acid Mine Drainage; Fly Ash; Neutralization; Sulphates; Metal ions; Solid Residues (SR); Column Leaching; Geochemical Modeling; Sequential Extraction; Buffering.South Afric

    Treatment of Acid Mine Drainage with Coal Fly Ash: Exploring the Solution Chemistry and Product Water Quality

    Get PDF
    A treatment process for Acid mine drainage (AMD) using coal fly ash (CFA) was developed. AMD was treated with CFA as the alkaline agent at different CFA: AMD ratios and pH, electrical conductivity (EC) evolution monitored over time. In a separate experiment two AMD sources with differing chemistry were treated with the same CFA to evaluate the impact of AMD chemistry on the treatment process and product water quality. Various CFA: AMD ratios were stirred in a beaker for a pre-set time and the process water chemistry determined. pH was observed to increase in a stepwise manner with buffer zones observed at 4-4.5, 4.5-7 and 6-8. AMD with low concentration of Al3+, Fe2+, Fe3+ and Mn2+ didn’t exhibit these buffer zones. Two competing processes were observed to control the evolving pH of process water: dissolution of basic oxides (CaO, MgO) from CFA led to pH increase and hydrolysis of AMD species such as Al3+, Fe2+, Fe3+ and Mn2+ led to pH decrease. These processes initiated mechanisms such as precipitation, adsorption and ion exchange that led to decrease in inorganic contaminants as the treatment progressed. Inorganic contaminants removal was directly related to amount of CFA in reaction media. Precipitation of insoluble hydroxides and Al, Fe-oxyhydroxysulphates contributed to removal of major and minor chemical species. Precipitation of gypsum contributed to removal of sulphate. Na, K and Mg remained largely in solution after initial decrease. Significant leaching of B, Sr, Ba, and Mo from CFA was observed and was directly linked to amount of CFA in the reaction media. This will be a shortcoming of the treatment process since other processes may be required to polish up the product water. The treatment of AMD with CFA was observed to depend on CFA, AMD chemistry, treatment time and might therefore be site specific

    Evaluation of the Bioavailability and Translocation of Selected Heavy Metals by <i>Brassica juncea</i> and <i>Spinacea oleracea</i> L for a South African Power Utility Coal Fly Ash

    No full text
    This study evaluated the physicochemical and mineralogical properties, mobile chemical species bioavailability and translocation in Brassica juncea and Spinacea oleracea L. plants of a South African coal-fired power utility. Coal-fly-ash (CFA) disposal is associated with various environmental and health risks, including air, soil, surface, and groundwater pollution due to the leaching of toxic heavy metals; these ends up in food webs affecting human health, while repeated inhalation causes bronchitis, silicosis, hair loss, and lung cancer. The morphology and chemical and mineralogical composition of CFA were determined using Scanning Electron Microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction, respectively. In pot-culture experiments, S. oleracea L. and B. juncea plants were grown in three sets of pots containing CFA (Set 1), soil (Set 2), and a mixture of CFA plus soil at a ratio of 1:1 (50% CFA: 50% soil, Set 3), while no plants were grown in Set 4 as a control for the leachate samples. SEM showed that the surface morphology of CFA has a lower degree of sphericity with the irregular agglomerations of many particles. XRF results revealed that CFA contains 43.65%, 22.68%, and 10.89% of SiO2, Al2O3, and Fe2O3, respectively, which indicates that CFA is an aluminosilicate material. X-ray diffraction (XRD) showed that CFA contains mullite as a major phase, followed by quartz mineral phases. Chemical species such as B, Ba, Mo, and Cr were occurring at higher concentrations in the leachates for most weeks in the pot-culture experiments, especially for CFA and soil + CFA growth media. However, there was a common trend for all growth media of chemical-species concentrations declining with time, which might have been caused by plant uptake or wash-off with water during irrigation; even for the growth media as well, where no plants were grown. Chemical species, such as Fe, Mn, B, Ba, and Zn, accumulated highly in most parts of the plant species. However, B. juncea showed higher potential to accumulate chemical species as compared to S. oleracea L. Bioconcentration and translocation factors (BF and TF) showed that B. juncea was the most effective in terms of bioconcentration and translocation of most of the chemical species. This indicates that B. juncea has potential in application for the phytoremediation of CFA dumps, and could contribute to the remediation of CFA dumps and the reduction of potential health and environmental impact associated with CFA

    Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments

    No full text
    The Benue Trough Basin (BTB) of Nigeria is geologically and geo-morphologically subdivided into upper, middle, and lower segments. The BTB is the subject of geological research due to its rich coal deposits that have the potential for oil and gas. The purpose of the present study is to examine the origins, depositional environments, and thermal history of the selected coals and the processes that influence their quality. Coal samples from different open cast coal mines in the middle BTB were examined using proximate and ultimate, x-ray diffraction (XRD), x-ray fluorescence (XRF), laser ablation induced coupled plasma (LA-ICPMS), and petrographical analyses. The coal samples contained mainly quartz, kaolinite, and organic carbon. The XRD spectra peaks revealed the triclinic and monoclinic structure of kaolin. The SiO2/Al2O3 ratios confirmed the dominance of quartz and kaolinite. The Ni/Co versus V/Cr, Cu/Zn, and V/Mo values in the studied coals suggest oxic depositional environments, whereas the V/(Ni + V) and V/(V + Cr) values indicate oxic to suboxic conditions. The Ce/Ce∗ values are slightly below 1, which indicates a suboxic depositional environment. Maceral texture is indicative of transformations from sub-bituminous to high volatile C or B bituminous coal. The maceral components and mineral matter (≥10%) of the studied coals imply deposition in the planar margin mire, and a river system of planar margin mire environments, respectively. The high gelification index (GI) and tissue preservation index (TPI) values indicate peat accumulation developed within a wet forest swamp. The ternary diagram of the maceral component suggests deposition in a wet moor environment with intermittent moderate to high flooding episodes. The studied coals are sub-hydrous vitrinite inferring hydrogen-poor and thermally immature characteristics. The low V and Ni contents, low H/C and high O/C, indicate Type Ⅲ terrestrial organic matter with the potential to generate gaseous hydrocarbons. The investigated coals were deposited by the river within telmatic, limnic, and limno-telmatic zones in the planar margin mire depositional environments. Overall, the integrated petrologic and geochemical data used in this study provides a reliable approach for the assessment of coal depositional environments
    corecore